
A Survey of Data Models
Jim Kowalkowski and Marc Paterno

FNAL/CD/CEPA
Revision 1.0

Contents

1 Introduction 1

1.1 What is an Event Data Model? . 1

1.2 Why is an EDM Useful? . 2

1.3 The Common Features of EDMs . 2

2 Common Needs 3

3 A Survey of Selected EDMs 3

3.1 The Event Class . 4

3.2 “Pieces” . 5

3.3 Searching . 6

3.4 Associations . 7

3.5 Persistency . 8

1 Introduction

In this document we present a general description of an event data model, including the purpose
and common features of such. We present a brief survey of some existing event data models. We
also present some lessons learned from the design, implementation, and review of these event
data models.

1.1 What is an Event Data Model?

An Event Data Model (EDM) is a set of software components1 which provide a mechanism for
managing data related to an “event” (i.e. a collision)2 within a program. An EDM is not merely
a persistency mechanism, nor is it an input/output mechanism a file format — although it is
related to these things. We shall discuss only object-oriented EDMs, that is, models in which the
“event data” consists of a group of interacting objects. In one case, we shall discuss an EDM
which have features that allow procedural languages to access event data.

1 More formally, the software components are the implementation of the model, which is the set of concepts repre-
sented by the implementation. But in this document, we’re not going to be that formal.

2Throughout this document, we use nomenclature common to collider experiments. We do this because it is the do-
main with which we are most familiar. We trust our colleagues in the fixed target field can translate terms appropriately.

1

2 A Survey of Data Models (Revision 1.0)

An EDM is different from a framework, which provides a mechanism for constructing pro-
grams (typically triggering, filtering, reconstruction, analysis, and event display) programs from
independent modules. Often, an EDM has no knowledge of (or dependence upon) a framework,
and a framework has little or no knowledge of the EDM.

Most EDMs consist of a core of classes that form a basic infrastructure, and a large set of
classes which represent the “physics objects” of the system. The infrastructure classes should
be completed early in the development cycle. In contrast, the set of physics objects is infinitely
extensible, and is in continuous flux.

The i/o system should use the EDM, viewing data objects in an abstract fashion, and per-
forming i/o for the user without requiring knowledge of the specific physics objects in the EDM.

1.2 Why is an EDM Useful?

Use of a clearly defined EDM provides several benefits for an experiment.

• It allows for independence of framework modules. This is achieved by having the frame-
work modules communicate only through the EDM. Independent modules can be devel-
oped, tested, and upgraded independently, which is critical for any substantial body of code
that is to be maintained for several (or many) years.

• It allows for independent development of data objects and algorithms when such develop-
ment is possible. It enhances the orthogonality in design—which leads to more maintainable
code.

• It can isolate users from need to interact with persistency mechanism. The core code of the
EDM can handle routine manipulations, allowing physicists to concentrate on the important
business, rather than busying themselves with repetitive coding.

• It can isolate users from input/output mechanism. A well-defined EDM allows the frame-
work to handle the business of handling files (or other data sources), and reading and
writing events.

• It can isolate users from the details of the file format. Changes in the file format do not
impact users.

1.3 The Common Features of EDMs

Some features are shared by (nearly) all EDMs. Here we describe these features in general terms;
in §3, we describe each in more detail, in the context of several example experiments.

Each EDM has an “event” class, which represents all the data associated with a single colli-
sion. The “event” is generally some sort of collection of contained objects, although the nature of
the collection can vary widely. Generally, the “event” is responsible for managing the lifetime of
its contents.

Each EDM has many classes representing various “pieces” of an event. Some of these “pieces”
are “raw data” (e.g. ADC counts from a calorimeter cell), others are “processed data” (e.g. a track
found in tracking device), and others are formed from associations of either or both of these items
(e.g. an electron candidate formed from a group of calorimeter hits and a track).

Each EDM contains navigation classes. These include the classes used to find specific items
within the event (e.g. all the tracks found by a specific algorithm) as well as the classes used to

A Survey of Data Models (Revision 1.0) 3

associate items with other items in an event (e.g. this muon candidate is associated with that
track).

Each EDM contains metadata classes, which describe the event data and its processing,
rather than representing event data. Some examples are run and event numbers, triggers sat-
isfied by an event, and identification of which algorithms were responsible for the creation of a
specific event datum.

2 Common Needs

The features of an EDM must fit the needs of the experiment using that EDM. There are some
needs that seem common to all experiments; in §3, we identify these common needs. In a later
section we describe the EDM features that satisfy these needs.

An EDM must support flexibility in program design. Probably the most important manner in
which an EDM supports flexibility is by providing the means by which more than one algorithm is
allowed to produce a given kind of output. The EDM must supporting holding multiple instances
of a given type of output, and must also support distinguishing one from another. For example,
an experiment may want to produce jets by both cone algorithms and KT algorithms. It is
necessary to distinguish between the jets made by different algorithms. Furthermore, a single
algorithm can be configured with different parameters; it is necessary to distinguish between
R = 0.7 cone jets and R = 0.4 cone jets. The EDM must provide a mechanism to unambiguously
identify the origin of each jet.

An EDM must support extensibility. Many different types of reconstructed objects need to be
stored in the event. All of these types make up “the EDM”. However, not all of these types can be
provided in the core package that makes up the EDM. There is often a continuous need to add
new types, needed to support new physics work, through the lifetime of an experiment. It hope-
less (and counter-productive) to pretend that all the types can be determined at the beginning
of the experiment. The EDM must make it possible for new types to be added without breaking
existing code, and without requiring significant modification of the EDM. This allows the EDM to
grow incrementally, as user demands guide the growth.

The EDM must support modification. It should be expected that early versions of most of the
classes defined to represent event data objects shall be less than perfect. As new information
is gained about the needs of users, it must be possible to update the classes without rendering
unusable those data written with the older definitions. Such schema evolution must be built into
the EDM.

3 A Survey of Selected EDMs

In this section, we present a survey of several existing EDMs. The choice of experiments surveyed
is limited to those experiments with which the authors are reasonably familiar. Possible future
revisions of this document may contain information from additional experiments.

In the notation below, CDF and DØ refer to the event models of those experiments; Gaudi
refers to the event model under development for LHCb3, MB refers to the event model of the
MiniBooNE experiment, and MB(F) refers to the Fortran interface to the MiniBooNE event model.

3Note that Gaudi refers to the status of the LHCb implementation of the EDM portion of the Gaudi framework, as of
Sept. 2001.

4 A Survey of Data Models (Revision 1.0)

3.1 The Event Class

3.1.1 How does the user get access to the Event?

CDF Passed into function calls, also available in a global variable.
DØ Passed into function calls.

Gaudi Query for search of global singleton registry.
MB Passed into function calls.

MB(F) Globally available.

3.1.2 Can there be more than one Event available at one time?

CDF Yes, but use of the global would cause trouble.
DØ Yes.

Gaudi Yes, but it is unclear how to access them through the global store.
MB Yes.

MB(F) No.

3.1.3 What is the basic style of the interface?

The question here is how the event appears to the user; what sort of interaction methods are
provided?

CDF Iteration over a container of abstract nodes.
DØ “Database” with a variety of defined queries, typesafe.

Gaudi Filesystem-style hierarchy of named abstract nodes.
MB Associative array of nodes, typesafe.

MB(F) Subroutine calls to load common blocks.

3.1.4 How do we add data to the event?

CDF Append to event; ownership passed to Event (by design), no copying.
DØ Insert into event; ownership passed to Event (by design), no copying.

Gaudi Insert into event; ownership is passed to Event (by convention), no copying.
MB Insert into event; ownership passed to Event (by design), no copying.

MB(F) Subroutine call to copy from common block, into an object which is inserted into
the event.

3.1.5 Are inserted items immutable?

CDF Yes, except that some items can “grow”.
DØ Yes.

Gaudi No.
MB under development

MB(F) under development

We believe that having an Event class is important because the “event” is an important feature
of the problem domain—it models reality.

Having an Event passed into the functions which shall modify it, or which read it, decreases
the impact of side-effects. Side-effects can induce a variety of problems:

A Survey of Data Models (Revision 1.0) 5

• they produces coupling between conceptually distant parts of the code, making the code
more difficult to understand;

• they hinders optimizations;
• they hinders use of multiple threads of execution;
• they makes testing more difficult.

If the interface to the Event is insufficient, e.g. too low level, users shall invent their own,
perhaps on a subsystem-by-subsystem basis. This is terrible, as it leads to a different high-level
interface for each subsystem. Too rich an interface can also be a problem—many users shall use
the “simplest thing possible”. The simplest correct interface should be presented. For example,
experience has shown when an “easy but somewhat dangerous” interface and a “safe but slightly
less easy” interface are both presented, most users shall choose the easy road. Experience has
also shown that eventually the danger shall bite, and recovery can be painful.

A well-designed Event interface provides helpful uniformity of access to the different items
stored in the Event. This uniformity is valuable because it gives users less learning to do (both
for designers of additions to the EDM and for end-users of the EDM).

We believe it is important for an EDM to always make clear ownership of all resources (pri-
marily, but perhaps not only, the ownership of objects). Smart pointers, handles, etc., facilitate
correct use; reliance upon convention has often caused severe problems—memory corruption
and memory leaks being the most common examples.

We believe the immutability of the elements in an Event is important. Experiences has shown
that users who have violated this immutability have caused weeks of (unnecessary) debugging
effort for other users. The problems are sometimes not recognized until some “interesting” feature
of the data is investigated—for a lengthy period of time—leading to the discovery that the “feature”
is in fact an error in processing. In some cases, reproducibility of an analysis is destroyed by
modification of elements in the Event. We also believe that some modifications of the elements
in an Event (such as CDF’s ability to add to collections in a controlled fashion) are both safe and
valuable.

3.2 “Pieces”

What is required for a class to become part of the EDM—that is, for instances of this class to be
stored in an Event?

3.2.1 What requirements are imposed?

CDF Inheritance from TObject via StorableObject. Requires CDF macro, to write some
of the interface required by ROOT.

DØ Inheritance from AbsChunk. Requires DØ macro, to write some of the interface
required by DOOM. Requires possession of identifying information (IDs of parents,
IDs of algorithm used for generation, IDs for “environment”.

Gaudi Inheritance from DataObject. Requires ability to return a globally unique integer
ID for the class.

MB Any class that is CopyConstructible. Should be a POD; current usage of ROOT
violates this.

MB(F) Any (properly padded) common block; no strings are allowed.

6 A Survey of Data Models (Revision 1.0)

3.2.2 Can we have more than one of each type active?

CDF Yes.
DØ Yes.

Gaudi Yes.
MB Yes.

MB(F) No.

Experience has shown that it is necessary to be able to run the same algorithm with different
configurations multiple times for the same event, and to save the results from each invocation of
the algorithm. In the next section, we concentrate on the importance of being able to unambi-
giously distinguish between the results of these invocations.

It is important for the design of these classes to have the compiler enforce as many of the
“design rules” of the EDM as possible. It is much worse for these “design rules” to exist only
as a check list for the various users to obey. Experience has shown that enforcing such rules
is extremely difficult, and grows more difficult as time progresses and as the size of the project
expands.

Experience has shown that the more “data-like” these objects are they easier they are to deal
with in many ways.

• It is easier to map struct-like data (rather than rich C++ classes) to a persistent format.
• It is easier to manipulate such objects from other languages.
• It is easier to manipulate such objects in a variety of analysis tools.
• It is easier to handle schema evolution for simple data-like objects.

We do not mean to say that an object-oriented design is less good than a procedural or simply
object-centric design. The rich C++ interface to the data objects can be provided by classes which
encapsulate the simple data-like objects suggested here.

3.3 Searching

3.3.1 How are instances of objects within the event labeled?

CDF Unique object ID, configuration parameter set ID, descriptive string, class version,
and class name.

DØ Unique object ID, configuration parameter set ID, parent object IDs, and geometry
and calibration IDs, and string labels.

Gaudi Class ID, descriptive string with hierarchical path.
MB Descriptive string and class name.

MB(F) Descriptive string.

3.3.2 How does a user locate objects in the event?

CDF Custom iterators with optional selectors specifying a combination of labeling in-
formation. Find by class ID.

DØ Find with user specified criteria or specific labeling information. Muliple objects
returned.

Gaudi Find with string path information.
MB Find with class name/descriptive string. Single object returned

MB(F) Find with descriptive string. Single object returned

A Survey of Data Models (Revision 1.0) 7

3.3.3 What is returned from a search for objects in the event?

CDF Custom iterator that allow constant access to the object they refer to and traversal
to next object.

DØ A collection of handles that allow constant access to the objects.
Gaudi A bare pointer to the base class object or to the object itself. Modification is

dicouraged by convention only.
MB A contant pointer to the object

MB(F) A populated common block

3.3.3.1 How are multiple matches handled?

CDF The returned iterator moves through the matches.
DØ A collection of matches in returned.

Gaudi Not Applicable, Atlas is preparing iterator handle mechanism.
MB No multiple matches implemented yet.

MB(F) No multiple matches allowed.

Experience has shown that richness in labeling is important. Users shall encounter needs for
organizations of the data that are not anticipated in early designs; a rich labeling (and searching)
system allows them to obtain such views without modification to the core EDM. A too-simple,
fixed view of the data does not suffice. A single hierarchical view does not suffice.

We caution against lack of precision in the specification of what “pieces” of the Event are to be
returned as the result of some query. One should never expect there shall be only one instance
of any class; experience has shown that even if this is true today, it shall not remain so forever.
Concepts such as “the best version” or “the most recent version” are too imprecise to be safe,
and have caused troubles when used. Returning “the default version” is dangerous because it
can easily lead to irreproducibility. Experience has shown that later steps in reconstruction—
when they rely on “default versions” from earlier steps—can become dependent upon the order
in which previous reconstructions steps are done, because the meaning of “default” can easily
change, unbeknownst to the user.

3.4 Associations

3.4.1 How are association supported?

CDF Using special link classes that are converted from pointer to id and back by the
system. Link classes exist for objects with collection assocations.

DØ Special link classes for the persistent and pointer representations. Semi-
automated conversion process for saving and restoring. Link classes exist for
objects with collection assocations.

Gaudi Special class that link to a DataObject or vector of DataObjects.
MB Currently no infrastructure support.

MB(F) Not available.

8 A Survey of Data Models (Revision 1.0)

3.4.2 What restrictions are in place?

CDF No bare pointers allowed by convention. References to object directly registered in
the event. Only references to already recorded objects are allowed (one way, new
to older)

DØ No bare pointers from one object to another by convention. References to object
directly in the event or objects held within arrays that are held in the event. Same
one way restrictions as CDF

Gaudi Desire the use of the link classes only. References to objects derived from their
base class. Similar one way restructions.

MB Currently no infrastructure support.
MB(F) Not available.

3.4.3 How are N -way associations supported?

CDF Separate object in the event ties the objects together using the support link
classes.

DØ Separate object in the event ties the objects together using the support link
classes.

Gaudi unknown
MB Not available.

MB(F) Not available.

Experience shows that it is not feasible to store every type of reconstructed object as a top-level
“piece” of the event. For example, small objects such as individual tracking chamber “hits” are
not suitable candidates as top-level event “pieces”, because of the cost of retaining provenance
information about each object. For this reason, most “pieces” of an event turn out to be collec-
tions of objects (hits, tracks, jets, etc.), and in many instances these objects within the “pieces”
need to be referenced from outside the “piece”. An EDM must provide a flexible mechanism for
referencing such objects.

None of the EDMs surveyed directly support the creation of associations between groups of
objects which do not otherwise know about each other. The addition of such a facility would be
beneficial.4

3.5 Persistency

3.5.1 What requirements are imposed?

Two types of classes can be destinguished here: the ones that are appended directly to the event,
and the ones that are children of the directly attached objects.

CDF Macros to describe the directly attached classes. Streamers to serialize/deserialize
the data in the object. Indirect inheritance from TObject through the StorableOb-
ject base class.

DØ Indirect inheritance from the D0Object class from AbsChunk for directly attached
classes. Macros that write methods required by D0OM.

Gaudi All data must be publicly available or provide set/get methods to adjust the state
of the object externally.

MB Currently require the use of ROOT ClassDef macros.
MB(F) A C struct be maintained that maps onto the common block.

4It is our understanding that the CLEO EDM provides class templates to support such associations.

A Survey of Data Models (Revision 1.0) 9

3.5.2 What restriction are in place?

CDF Not an automated procedure, so anything that can be streamed out is allowed.
DØ Classes (main and the children) must be parsable by d0omCINT.

Gaudi None.
MB Simple elementary types and array of these types.

MB(F) C++ is not allowed — this is Fortran.

3.5.3 What features does it support?

CDF Streamer / BLOB.
DØ Isolated from the persistency mechanism. Multiple backends can be supplied.

Gaudi Isolated from the persistency mechanism.
MB ROOT dictionary.

MB(F) ROOT dictionary.

3.5.4 What is the file format?

CDF ROOT.
DØ DSPACK is the standard backend, others can be supported.

Gaudi Objectivity and ROOT (BLOBs) are available.
MB ROOT.

MB(F) ROOT.

3.5.5 How is schema evolution supported?

CDF Encoded as if statements in the streamers.
DØ Automated by D0OM, uses a data dictionary merge.

Gaudi Encoded as if statements in the converters.
MB ROOT data dictionary merge currently.

MB(F) Same as Above MB.

3.5.6 What is the object translation mechanism?

CDF Hand written code to write object’s data into the ROOT buffer. Sometimes time
consuming, highly compact. The transient representation typically differs signifi-
cantly from the persistent form. Transation managed through postRead, preWrite
methods of the object.

DØ Persistency is automated by a data dictionary. Automatically generated code per
class copies data to the DSPACK bank structure. Rarely used activate/deactivate
can do simple transient mapping. Frequently used to resolve references between
objects.

Gaudi Converter external to the class read state out into the persistency package buffers.
Example is to copy the data objects into objectivity objects, and then write the
those objects.

MB ROOT data dictionary.
MB(F) Copy of the common block to C++ objects, then to the ROOT dictionary as above.

In §3.2 we present some arguments for simple, data-like “pieces”; some of these relate to ease
of support for persistency.

10 A Survey of Data Models (Revision 1.0)

We observe that each experiment has chosen a single persistent format. It does not seem that
the effort that would be required to obtain independence from a persistency toolkit is worthwhile,
because of the amount of effort it would take to do it well. While our inclination is to say that
the flexibility of being able to easily move to a different persistence mechanism is important, our
observation has been that the toolkit in wide use—ROOT—is too intrusive to make this feasible.
For example, users want to tune parameters for efficiency; this require detailed knowledge of
exactly how ROOT works with buffers, etc.

Experience has shown that it is important for the persistency mechanism to have knowledge
about the EDM, but not for the EDM to have knowledge of the persistence mechanism. Inversion
of this relationship has caused significant trouble.

We have found that it is crucial to allow for hand-written “streamers” for schema evolution.
Automatic mapping for simple schema evolution is helpful, but experience has shown that is it
not sufficient to handle all cases.

	1 Introduction
	1.1 What is an Event Data Model?
	1.2 Why is an EDM Useful?
	1.3 The Common Features of EDMs

	2 Common Needs
	3 A Survey of Selected EDMs
	3.1 The Event Class
	3.2 ``Pieces''
	3.3 Searching
	3.4 Associations
	3.5 Persistency

